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Abstract: The Gravity Recovery and Climate Experiment (GRACE) mission has provided us
with unforeseen information on terrestrial water-storage (TWS) variability, contributing to our
understanding of global hydrological processes, including hydrological extreme events and
anthropogenic impacts on water storage. Attempts to decompose GRACE-based TWS signals
into its different water storage layers, i.e., surface water storage (SWS), soil moisture, groundwater
and snow, have shown that SWS is a principal component, particularly in the tropics, where major
rivers flow over arid regions at high latitudes. Here, we demonstrate that water levels, measured with
radar altimeters at a limited number of locations, can be used to reconstruct gridded GRACE-based
TWS signals in the Amazon basin, at spatial resolutions ranging from 0.5 to 3◦, with mean absolute
errors (MAE) as low as 2.5 cm and correlations as high as 0.98. We show that, at 3◦ spatial resolution,
spatially-distributed TWS time series can be precisely reconstructed with as few as 41 water-level
time series located within the basin. The proposed approach is competitive when compared to
existing TWS estimates derived from physically based and computationally expensive methods.
Also, a validation experiment indicates that TWS estimates can be extrapolated to periods beyond
that of the model regression with low errors. The approach is robust, based on regression models
and interpolation techniques, and offers a new possibility to reproduce spatially and temporally
distributed TWS that could be used to fill inter-mission gaps and to extend GRACE-based TWS time
series beyond its timespan.
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1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) satellites [1] have provided
unprecedented information on global water-storage dynamics by estimating variations in the terrestrial
water-storage (TWS) variability. GRACE data has been used to evaluate global TWS trends [2], to
monitor and characterize droughts (e.g., [3–5], estimate groundwater depletion due to anthropogenic
activities [6–9] and improve hydrological models through data assimilation techniques (e.g., [10,11])
towards a better quantification of land water-storage components and their spatial and temporal
variability. Since GRACE data provides estimates of the variability of the total amount of water-storage
change within a domain, the inability to identify the water layer and state has been a challenge in
decomposing TWS signals into its different components (i.e., groundwater, soil moisture, snow and
surface water (including rivers, floodplains, wetlands, lakes and reservoirs). Few studies attempted
to determine the impact of surface water storage (SWS) on TWS at the basin scale (e.g., [5], [6]).
Using state-of-the-art hydrological models, [12] were able to decompose TWS and determine the
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spatially-distributed impact of its components. Their results indicate that, although soil moisture has
the major impact on global TWS, surface water has a key role in the tropics and over large rivers. In the
Amazon basin, for example, SWS accounts for as much as 27% of TWS variability. Other studies, based
on remote-sensing data using different metrics, revealed that SWS amplitude is about 50–60% of that of
TWS (e.g., [13–15]). As well, using in situ data, [16] found a high correlation between river dynamics
and TWS in the Amazon basin.

GRACE data provides a 15-year span, from April 2002 to June 2017, with gaps. Its relatively
short temporal availability limits its applicability to long-term analyses, but the recent launch of the
GRACE Follow-On (GRACE-FO) mission, in May 2018, will prolong global TWS time series for several
more years. In order to fill the one-year gap between missions, and to extend TWS time series beyond
its timespan, different techniques estimating TWS variability based on model outputs [17], [18], in
situ data [19], the combination of both [20], and reanalyses [21] have been presented in the literature.
Table 1 provides a list of these studies. Although TWS derived from these techniques showed an overall
agreement with GRACE data, limitations in representing TWS variability and trends by models [22,23]
and restricted access to ground-based observations could hinder their widespread application. In
this sense, an alternative solution to fill these gaps is the use of other satellite sensors as a proxy to
determine TWS.

Radar altimetry (RA) technology has been continuously used to measure water levels in oceans
and inland waters since 1992 (e.g., [24–26]). Numerous studies have shown its potential (i) to monitor
large-scale inland water levels (e.g., [26–30], floodplain dynamics and water-storage change [13,31,32],
to estimate river flow velocity and streamflow [15,33,34], and (iii) to calibrate [35–37] and evaluate
hydrological models [12,38]. Here, we explore the relationship between GRACE data and surface
water-level dynamics, and the potential to derive TWS from large RA datasets. Based on previously
describe findings, our hypothesis is that, over tropical basins, where surface water significantly
contributes to TWS variability, radar altimetry can be used to reproduce terrestrial water-storage
signals. In that regard, we used a RA network composed of 984 virtual stations (VS; i.e., the intersection
between satellite tracks and water bodies) in the Amazon basin and developed an approach based on
regression models and interpolation techniques to transform point-based RA signals into a gridded
TWS product. In order to fill out areas without RA data availability, we evaluate three interpolation
techniques (kriging, inverse distance weighting and nearest neighbor) and, based on a sensitivity
analysis, we estimate the errors related to each technique and the maximum search radius for
interpolation. Calibration and validation periods are defined in order to determine the potential for the
technique to be extrapolated to other periods where GRACE-based TWS estimates are not available.
At the basin scale, surface water, soil moisture and groundwater in tropical regions are climatologically
in phase, as shown in [12]. This can be explained by the interconnectivity between surface and soil
waters, as suggested in previous studies [39,40]. In this sense, by exploring the relationship between
surface water and TWS, we assume that the SWS signal is a major contributor to TWS variability in the
Amazon basin and that its seasonality is generally correlated to the other hydrological variables.

Table 1. Previous attempts to reconstruct or predict terrestrial water-storage (TWS) signal.

Reference Approach Domain Time span Gridded

[17] Water budgetbased on model output Basins in Europe
and USA 2002–2006 No

[19] Water budget based on observed data
and model output

Amazon and
Mississippi basins

1970–2006
(Amazonas)
1928–2006

(Mississippi)

No

[41] Water budget based on observed and
reanalysis data

Basins in several
continents 1992–2005 No
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Table 1. Cont.

Reference Approach Domain Time span Gridded

[17] Water budgetbased on model output Basins in Europe
and USA 2002–2006 No

[42]
Reduced optimal interpolation using

GRACE data and in situ river level
records

Amazon basin 1980–2008 Yes

[18] Water budget using GRACE data and
model outputs Amazon basin 1948–2010 No

[20] Statistical model using reanalysis data Global 1985–2015 Yes

[43] Physically based modelling and deep
learning India 2002–2017 Yes

2. Materials and Methods

2.1. Gravity Recovery and Climate Experiment (GRACE) Terrestrial Water Storage (TWS)

GRACE measurements of the Earth’s time-variable gravity are processed by different centers that
provide monthly gravity solutions using two approaches: spherical harmonics and mass concentration
(mascons) blocks [44,45]. During the first years of GRACE observations, spherical harmonics was the
standard. However, recent studies have shown that the mascons solution offers several key advantages,
including (1) reduced leakage through the land-ocean interface, which increases signal amplitude; (2)
removal of north-south stripes is achieved without the need of empirical filters; and (3) finer resolution
for smaller areas [45,46]. Here, we used the University of Texas’ Center for Space Research (CSR)
version RL05 [47]. Although CSR GRACE masons are natively estimated at 120 km-wide mascon
blocks and resampled to a 0.5◦ spatial resolution grid, the actual resolution of its solution is about
250–300 km along the equator line. Mascons solutions from other GRACE data-processing centers
have different native resolution (e.g., three degree equal-area caps). Therefore, our analysis considered
four grid sizes: 0.5, 1, 2 and 3 degrees. For this reason, TWS was resampled into coarser resolutions by
averaging the 0.5◦ data. GRACE data have multiple sources of errors that emanate from instruments
measuring through post-processing [48]. A number of attempts to assess GRACE estimates have been
undertaken (e.g., [49,50]). GRACE data accuracy has been estimated to be less than 1cm in equivalent
water height, when averaged over areas larger than about 4 × 105 km2, and errors increase as the
area under observation decreases [51]. [49] noted that the errors increase at lower latitudes (~2.6 cm),
whereas it is around 0.8 cm near the poles. While evaluating the global CSR RL05 mascons solution, [46]
noted that GRACE-based TWS errors were the lowest (<3cm) for large basins (>0.5 million km2), but
up to three times higher for small basins.

2.2. Radar Altimetry Data

A total of 984 virtual stations are available over the Amazon basin for 2002–2016 on the Theia-Land’s
Hydroweb platform [29], derived from multiple satellite missions: Jason (11 VS), Jason 2 (88 VS),
Envisat (741 VS) and Sentinel 3A (144). The temporal resolution varies as a function of the satellite,
i.e., 10 days for Jason, 27 days for Sentinel 3A and 35 days for Envisat. [28] list two main sources
of errors in RA data. The first can be due to bounced back radar echoes, captured by the antenna
receiver that are caused by solid reflectors (e.g., vegetation, islets, etc). When such echoes are combined
with those from water surfaces at a different level, the height inference will be affected. Second, RA
retrievals can be biased if the detected surface is off-nadir, because the signal received by the satellite
may be dominated by water surface at the edge of the footprint. A tool was developed by [28] to
overcome those limitations and identified errors in altimetric time series below 20 cm up to meters.
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More specifically, they reported a characteristic error in the Envisat series below 30 cm. More details
about the generation of altimetry-based water levels used in this study can be found in [28].

2.3. Estimating Terrestrial Water Storage from Radar Altimetry

In this study, water level data was filtered by removing VS containing less than 12 months of data.
Gaps in the VS time series were filled using a shape-preserving piecewise cubic interpolation [52].
This method requires at least four neighboring grid points for the interpolation to be performed.
To reduce the chances of generating unrealistic interpolations, we only interpolated time series whose
gaps do not exceed 30% of its length. For example, a time series spanning 24 months was gap filled
only if the number of valid records exceeded 17, i.e., a maximum of 7 gaps (Figure S1 shows an example
of RA time-series interpolation using this technique). Gaps in the tails of the time series were not
filled, i.e., we did not perform temporal extrapolation. The filtering process resulted in 839 VS, whose
availability is unevenly distributed through time, i.e., a fraction of that figure is available each month
(Figure S2 shows the temporal distribution of VS data availability). For example, from 2004 to 2008, we
used ~600 VS; from 2008 to 2010, ~700 VS were available. Because few stations are available after 2010,
we limited the study period from October 2002 to July 2010, which was divided in two parts: five years
for the calibration period (April 2002–March 2007) and the remaining three years for the validation
period (April 2007–July 2010).

Radar altimetry data was converted to the monthly time step to match GRACE-based TWS
estimates (TWSGC) by averaging observations within the same month. GRACE pixels corresponding to
each VS were identified and correlations were computed between water levels and TWS. Because some
RA-based water level anomalies correlate better with TWS than others, we selected virtual stations with
highest correlation (Figure 1). This procedure was repeated for each of the four GRACE resolutions
considered in this study. We then used the best correlated points to fit a linear (TWS = a·H + b, where
H stands for water level anomalies) and a quadratic (TWS = a·H2 + b·H + c) regression models that
estimate TWS from radar altimetry (Table S1 provides regression equations and corresponding metrics
for the 3◦ solution). For each GRACE pixel, the regression model with the lowest mean square error was
selected. The regression models obtained for the calibration period were used to derive the estimates
for the validation period, i.e., during validation, the procedures described above are not repeated. As a
result, the number of pixels with regression-based TWS (TWSreg) estimates varied according to the
spatial resolution and month (i.e., finer resolutions result in more pixels covering the domain, hence
more VS are used, one for each pixel, wherever data is available) (Figure S3). The average number of
GRACE pixels with water-level data for each resolution was: 388 (0.5◦), 216 (1◦), 81 (2◦) and 41 (3◦).

Figure 1. Flowchart of the proposed approach for estimating Gravity Recovery and Climate Experiment
(GRACE)-based TWS from altimetry data.
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Note that TWSreg estimates are limited to the pixels containing at least one VS. The remaining pixels
do not have RA data with which a correlation could be established. To generate interpolation-based
TWS estimates (TWSinterp) in those remaining pixels, three interpolation methods were tested: ordinary
kriging (krig), inverse distance weighting (IDW), and nearest neighbor (NN). The method with best
performance was applied to produce the final TWS fields. Kriging is a geostatistical method based on the
regionalized variable theory, which accounts for the spatial variability of natural properties by means
of a stochastic approach [53]. It has been widely used to perform spatial analysis of meteorological and
hydrological data (e.g., [54–57]). Most of these data often present a spatial dependence, i.e., similarities
between two points are likely to increase as the distance between them decrease. Thus, one can infer
how a given property varies in space between sample points based on an experimental variogram,
which describes the spatial variability of a regionalized property or variable.

Here, we used the time-averaged TWS from GRACE to derive a unique experimental variogram
for each spatial resolution, from which weighting factors (λi), associated with TWSreg at location xi, are
derived. The kriging estimate TWSinterp at location x0 is given by:

TWSinterp(xo) =
n∑

i=1

λiTWSreg(xi) (1)

In the IDW method, TWSinterp is the weighted average of the known neighbor values; the weights
(wi) are computed as:

wi =
1
d2

i

(2)

where d is the distance between the xi and x0. Both krig and IDW methods were applied using the R
package gstat [58].

The NN method uses the Voronoi tessellation of a limited number of sample points to select,
for each grid point (xo), neighboring data points for interpolation [59]. Weighting is based on the
influence area of such data points. We used Matlab’s internal ‘scatteredInterpolant class’ to perform the
NN interpolation. Previous studies have applied IDW and NN to (spatially) interpolate rainfall and
other environmental data at multiple time scales (e.g., [60–65]).

Finally, the different TWSinterp estimates were merged with TWSreg to produce the final
altimetry-based TWS (TWSalt). The interpolation method with best performance was applied to
produce the final TWS fields.

2.4. Evaluation Procedure

For both calibration and validation periods, the mean absolute error (MAE), correlation coefficient
(CC) and standard deviation ratio (γ) between our TWS estimates and TWSGC were calculated.

MAE =
n∑

i=1

|TWSGC − TWSest|

n
(3)

γ_ =
σalt
σGC

(4)

where TWSest can be TWSreg, TWSinterp or TWSalt; σGC and σest are, respectively, standard deviation of
TWSGC and TWSest time series.

We also evaluated the final product during extreme events and by comparison against other
products. Regarding the former, we analyzed TWSGC seasonal anomalies between 2003 and 2010;
and selected two extreme periods (one wet and one dry) to carry out such comparison. We then
compared TWS estimates averaged for the entire Amazon basin and its main tributaries: Solimões,
Negro, Tajapós, Madeira, Xingu rivers, and the area where the extreme events occurred.



Remote Sens. 2019, 11, 2487 6 of 15

Finally, we compared our basin-averaged estimates against previous studies that attempted
to reconstruct TWS. In particular, we used the estimates produced by [12] as a benchmark for our
product. Such TWS estimates are a result of state-of-the-art hydrological models, i.e., the Noah land
surface model with multi-physics options (Noah-MP: [66] and the Hydrological Modeling and Analysis
Platform (HyMAP) river-routing scheme [67,68], simulating five major water storage components (i.e.,
groundwater, soil moisture, snow, canopy interception and surface water storage, which includes
rivers and floodplains) at the global scale. Anthropogenic activities were neglected in their TWS
estimate. The final product is the mean of a 12-member ensemble composed of model runs forced with
different meteorological and precipitation datasets. More details on the ensemble generation can be
found in [12].

3. Results

3.1. GRACE-Based TWS versus Radar Altimetry

Radar altimetry data correlates well with TWSGC, with CC≥0.8 in most pixels (1st row in Figure 2).
CC tends to increase as the spatial resolution degrades. At finer resolutions (0.5◦ and 1◦), high
correlations (CC > 0.8) were mostly found in the central Amazon basin. Few points exhibited a weak,
although positive, relationship (CC < 0.4) between TWSGC and RA data, and are located near the
basin’s boundary.

Figure 2. Performance maps of radar altimetry (RA)-based products for different spatial resolutions
(columns). The dots in the upper maps indicate the location of the virtual station that best correlates
with GRACE-TWS solution colored according to the correlation coefficient (CC) for the calibration
period (Apr 2002–Mar 2007). RA-based TWS metrics for the validation period (Apr 2007–Oct 2010) are
shown in the 2nd and 3rd rows.

3.2. Evaluation of the Regression-Based TWS Estimates

Supported by the good correlation between TWSGC and water-level observations in the study
area, we estimated TWS from RA data. TWSalt and TWSGC correlates well and deviations measured
by the MAE indicate that errors are low (2nd and 3rd rows in Figure 2). Previous studies (e.g., [19])
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showed Amazon basin-averaged TWS amplitudes of 15 cm, with values above 170cm over the center
of the basin (see Figure S4). Few pixels showed MAE >10cm, and even less reached the maximum
error (MAE ~20cm). Most estimates had MAE lower than 10 cm, corresponding to <10% of local
TWSGC amplitude.

Following the relationship noted between GRACE-based TWS and RA data, our estimates were
closer to TWS at coarser resolutions. At 0.5◦ and 1◦, the averaged CC were similar (~0.78), although
MAE values were ~0.4 cm lower at 1◦ than those obtained at 0.5◦. At 2 and 3◦, CC values were
mostly higher than 0.8 and MAE values lower than 5.6cm. Considering the straightforwardness of the
proposed approach, the errors in most pixels were relatively low, indicating that the estimates were
satisfactory. Evaluation metrics did not show much change between calibration and validation periods
(Table 2).

Table 2. Amazon basin-averaged performance of regression-based TWS (MAE = Mean Absolute Error;
CC = Correlation Coefficient; γ = standard deviation ratio).

Product—Resolution MAE (cm)
(calib./valid)

CC
(calib./valid)

γ

(calib./valid)

TWSalt−0.5◦ 6.43/6.35 0.78/0.79 0.77/0.77

TWSalt−1◦ 5.9/6.05 0.78/0.78 0.78/0.75

TWSalt−2◦ 5.41/5.58 0.82/0.82 0.81/0.79

TWSalt−3◦ 5.09/5.40 0.80/0.78 0.79/0.75

3.3. Interpolation Evaluation

TWSinterp was satisfactory at all spatial resolutions. Comparisons against TWSGC show high CC
(>0.8) and low MAE (<10cm) at most interpolated pixels (Figure 3). Correlation was lower for pixels
near the basin boundary because of the lower number of VS available within a short radius, reducing
the quality of the interpolation. TWSinterp also shows increased MAE values towards the basin outlet,
especially around the mainstream in the eastern part of region, where TWSalt also exhibited high MAE
(>15 cm). Given the high RA data availability in that part of the basin, the low performance of both
TWSalt and TWSinterp could be related to the sea tide influence on the water level. According to [69],
the tide effect can be noticed more than 1000 km upstream from the Amazon basin outlet. This means
that the monthly mean water level derived from altimetry could be contaminated by the tide, reducing
the correspondence with GRACE-based TWS.

The interpolation results in Figure 3 were obtained by setting the maximum search radius (MSR)
varying from 3.5◦ to 4.5◦, depending on the grid resolution, and a minimum of three pixels with VS
within that radius. To test how the search radius affects the interpolation, we calculated the mean CC
resulting from the kriging and NN interpolation as such radius increases. This analysis is necessary
because the quality of the estimates decreases as MSR increases, but setting a small MSR means
neglecting pixels near the basin boundary. Because the results from IDW and kriging methods were
similar, Figure 4 shows the plots for kriging and nearest neighbor (NN) methods only. We noted that,
using kriging (and IDW), correlation is above 0.8 for all MSR and about 100% of pixels were filled with
MSR ≥4.5◦ for 3◦ spatial resolution and MSR ≥3◦ for finer spatial resolutions. For the NN method, the
gain of spatial coverage comes with a high cost to the quality: CC decreases faster than that using
kriging as MSR increases, with CC falling below 0.8 for MSR ≥2.5◦ and 10% of empty pixels (Figure 3).
Based on that evaluation, we limited the search radius at 3.5◦ for the 0.5◦ grid, 4◦ for the 1◦ grid, and
4.5◦ for 2◦ and 3◦ grids.
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Figure 3. Interpolation evaluation maps: correlation coefficient (CC, 1st–3rd rows) and mean absolute
errors (MAE, 4th–6th rows) at the interpolated pixels using three methods of interpolation: the inverse
distance weighting (IDW), kriging (krig), and nearest neighbor (NN). Average values are shown in the
upper left corner of each map.

Figure 4. Correlation and fraction of pixels with TWS estimated by interpolation as a function of the
variable search radius.
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3.4. Basin-Average TWS

We aggregated all altimetry-based TWS estimates (TWSreg + TWSinterp) and averaged the final
product (TWSalt) over the Amazon River basin and basins of its main tributaries. Among the droughts
and floods that have occurred in the region, we selected two extreme events, one during the dry season
(MAM 2004) and one wet (DJF 2009), that covered practically the same area extent in the northern part
of the Amazon Basin (Figure 5). The time series for such ‘extreme’ area are shown in Figure 5, as well
as selected metrics (MAE, CC and γ) between TWSGC and TWSalt for each basin and resolution.

TWSalt compared well with TWSGC over the study period (October 2002–July 2010), especially at
1◦ spatial resolution, which was used to plot the time series in Figure 5. The amplitude, phase and
shape of the estimated time series are very close to GRACE data. TWSalt for the ‘Extreme’ area is also
similar to TWSGC, indicating that our estimates are not significantly affected by such extremes and can
provide reliable TWS estimates under different scenarios (regular, droughts and floods).

Although the difference between the seasonal anomaly detected by TWSGC and TWSalt were
relatively large for some pixels during MAM 2004, such deviations did not affect the basin average
time series. For the wet period (DJF 2009), the seasonal anomalies are well represented both at the
pixel scale as well as in the basin-average time series. As the spatial resolution degrades, we can see
three different trends in MAE: an increase in the Negro and Solimões River basins and in the selected
extreme event region; a decrease in the Madeira, Tapajós and Xingu River basins; and little change in
the Amazon River basin (Figure 6).

Except for Xingu at 0.5 and 1◦, and Negro at 3◦, MAE between TWSalt and TWSGC time series was
below 6 cm. With a few exceptions, CC was above 0.95 for all resolutions and basins. The lowest CC
was found for the Negro River basin at 3◦. At 3◦ and compared to other basins, TWSalt for the Negro
River basin was not as well represented: MAE >6cm and CC <0.9. This limitation is linked to the fact
that, at such resolution, two among the few pixels in the Negro River basin have low CC between RA
and TWSGC (see Figure 1). For finer resolutions, the number of well correlated virtual stations is higher,
enhancing the quality of our estimates in that basin. The standard deviation ratio (γ) was the only
metric with a similar (negative) trend among the analyzed cases, i.e., it decreased for all sub-basins as
the spatial resolution degrades. Regardless of the basins and spatial resolution, γ > 1 show that the
amplitude of TWSalt signal is greater than that from TWSGC. In most basins, γ decreases as spatial
resolution degrades from 1◦ to 2◦. At 3◦, γ converged to a range between 1.5 and 1.2 for the Amazon,
Madeira, Negro and Tapajós basins, and below 1.1 for Extreme, Solimões and Xingu River basins.
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Figure 5. Summary of results. Panels on the top (first and third column, rows 1–3) show time series of
GRACE-based (TWSGC), aggregated altimetry-based TWS (TWSalt) and model-based TWS (TWSMOD)
from [12] for the Amazon River Basin and sub-basins estimated at 1◦ spatial resolution. ‘Extreme’ refers
to the area where extreme dry and wet events occurred, in 2004 and 2009, respectively. Maps in the
center row show TWSGC anomalies [cm] and difference between GRACE and altimetry-based TWS
(TWSGC-TWSalt) for March–May (MAM) 2004 and December–February (DJF) 2009. The table in the
bottom lists TWSalt and TWSMOD metrics for both calibration and validation periods. Calibration and
validation are separated by the dotted vertical line in the time series. TWSalt corresponds to the kriging
interpolation result.
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Figure 6. Metrics (MAE, CC and γ) between GRACE-based TWS and altimetry-based TWS for each
basin and resolution for the whole study period (2002–2010). The interpolation method used to produce
the TWS product in this figure was kriging.

4. Discussion

TWSalt is competitive compared to previous studies that have reconstructed or predicted TWS
time series (e.g., [17,18,21]). As an attempt to reconstruct gridded TWS using the Global Land Data
Assimilation System (GLDAS; [70]), [18] found that TWS estimates are poorly correlated with GRACE
data, with CC <0.5 in about 50% of the basin. They also proposed a linear regression model to predict
the basin-averaged TWS signals that satisfactorily captured the general variation patterns found in
TWSGC (no metric was reported for that product). Based on a visual comparison between their plots
and ours confirm the competitivity of our product. Not only our time series depicted the variation
patterns of TWSGC, we show a good agreement for several sub-basins of the Amazon basin in terms of
both time series and spatial distribution.

Water budget-based TWS time series by [20] was also derived for the entire Amazon basin.
Performance metrics relative to less than a four-year period during which GRACE data was available
are not reported in his paper. The largest difference reported between TWSGC and its estimates occurred
in 2003, ranging from five to ten cm. Using seven time series, as shown in Figure 6, each ~eight-year
long, we quantified the deviations to the basin-averaged GRACE-based TWS. Only seven months
(3%) had deviations larger than 15 cm, whereas 300 months (~47%) had deviations smaller than 5 cm
(Figure S5).

Reference [41] found correlations ranging from –0.31 to 0.77 between their reanalysis-based TWS
and GRACE estimates for a number of basins across North America, Europe, Asia and Australia.
Using water level data at 58 in situ stations, [19] reconstructed TWS signal over the Amazon using in
situ water-level data and obtained correlations of about 0.9 between their time series and that from
the basin-averaged GRACE data. [21] reconstructed global 0.5◦ TWS time series over ~30 years and
obtained correlations (0.94–0.97) and MAE (2.3 cm–5.1cm) similar to ours, over the Amazon basin and
sub-basins. In terms of standard deviation ratio, their product overperformed ours: while we found
1.02 < γ <1.17, that metric ranged from 1.02–1.06 with their dataset.

5. Conclusions

Here, we presented a simple and efficient method to estimate monthly gridded TWS over the
Amazon Basin, at different spatial resolutions, fully based on remote sensing data. This study offers a
straightforward option for gap-filling GRACE-based TWS data and reconstruct past TWS over regions
where surface water accounts for an important part of TWS signal, such as the Amazon basin [6].
Unlike previous approaches that relied on ancillary information (e.g., hydrological model outputs,
meteorological forcing and reanalyzes), the proposed method only requires radar altimetry time series.
It consists of using regression coefficients between GRACE-based TWS and RA-based water levels, to
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predict TWS solely from radar altimetry data. Radar altimetry data is available from 1992 to present
and can be acquired near real time, allowing a low-latency TWS estimate, as opposed to GRACE’s
several-month latency.

We showed that altimetry-based TWS compares well with GRACE-based TWS, as indicated by
the performance metrics, and that selected extreme events can be satisfactorily represented. Although
altimetric data is not available with enough density to provide TWS estimates all over the domain at finer
resolutions (i.e., 0.5◦ and 1◦), we were able to reproduce spatially continuous gridded products, at such
grid sizes, by means of interpolation of regression-based TWS estimates. Results also demonstrated
that TWS time series can be reconstructed with high accuracy at coarser spatial resolutions over the
Amazon basin with as few as 41 virtual stations.

Despite the promising results, future analyses are needed in order to determine the applicability
of the method over other regions and, ultimately, at the global scale. The main limitations that need
further investigation could be found in regions with low RA data availability or low influence of surface
water on TWS, in particular snow-dominated regions. Although the radar altimetry dataset adopted
in this study provides a large number of virtual stations over the Amazon basin, data gaps limited
its use to the 2002–2010 period. As a consequence, the recent development of tools to automatically
extract multi-mission radar altimetry data (e.g., [43]) could contribute to increase data availability.
Nonetheless, our approach has a great potential to provide high-temporal and -spatial estimates of
TWS in a near future, with the launch of the Surface Water and Ocean Topography (SWOT) mission,
scheduled for 2021.
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Amazon basin. Amplitudes result from the difference between average climatological maximum and minimum
values estimated for 2002–2017; Figure S5. Histogram of differences between the time series of GRACE-based
(TWSGC) and altimetry-based (TWSalt) terrestrial water storage (TWSGC—TWSalt,) at 1◦ spatial resolution; Table
S1 - Regression equations and corresponding statistics for each pixel (3º x 3º grid)
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